

E-CFW PIPE DESIGN PROGRAM HANDBOOK

TOPFIBRA
EFFECTIVE FILAMENT WINDING® PIONEERS

***E-CFW PIPE DESIGN PROGRAM
HANDBOOK***

TOPFIBRA
EFFECTIVE FILAMENT WINDING® PIONEERS

TOPFIBRA
EFFECTIVE FILAMENT WINDING® PIONEERS

E-CFW PIPE DESIGN PROGRAM HANDBOOK

TABLE OF CONTENTS

1. USING TOPFIBRA DESIGN PROGRAM FOR GRP PIPES PRODUCED ON TOPFIBRA'S CONTINUOUS FILAMENT WINDING MACHINE.....	5
1.1. General provisions and references	5
1.2. Installation of the program	5
1.3. Input sheet	6
1.4. Process setting input sheet	11
1.5. Brief page.....	15
1.6. Machine settings.....	15
1.7. Unit costs	16
1.8. Custom design	18
1.9. Input thickness of the layers manually.....	19
1.10. Audits.....	19

TOPFIBRA
EFFECTIVE FILAMENT WINDING® PIONEERS

1. USING TOPFIBRA DESIGN PROGRAM FOR GRP PIPES PRODUCED ON TOPFIBRA'S CONTINUOUS FILAMENT WINDING MACHINE

1.1. General provisions and references

This Handbook is referring to the Excel worksheet supplied by TOPFIBRA, titled:

E-CFW Pipe Design Ryy.nn COMPANY.xls

"Ryy.nn" is the revision tag of the program, where "yy" indicates the year and "nn" is the revision date.

The file is supplied in XLMS format for Office 2007, but can also be opened with a fully upgraded Office 2003 with a compatibility pack.

Basic input and operations can be made from the [Input] sheet. This includes diameter selection, the input of the pressure and stiffness class, change of the mortar core type, change of the resin system, and all the output print.

The sheet [Process settings] allows you to define the optional parameters that are not frequently changed.

The file has the archive attribute set to it in order to prevent accidental overwriting. To save settings made in the [Process setting] sheet, save a copy of the file with a different name or save it in a different directory. Topfibra is not liable for any changes that the User may carry out to the program. Keep one or more copies of the original file in different places.

1.2. Installation of the program

There are no special requirements for the installation of the program, since it is a simple Excel worksheet with macros, apart from a proper installation of the "Solver" Add-In for Excel.

The macro protection must be deactivated, or you have to save the program file into a trusted directory.

The "Solver" is an external function, supplied with Excel, which must be installed and correctly referenced in the Microsoft Visual Basic for Application (MS-VBA).

- The E-CFW Pipe Design Program itself checks the availability and activation of the "Solver" Add-In for Excel.
- If this check is not passed, please verify the installation of Excel.

- In Office 2007, where the "round" Office Button is in the top right corner, select "Excel Options" in the low window frame, then "Add-Ins" in the left vertical choices. In the "combo box" at the bottom of the window the "Excel Add Ins" should already be visible, otherwise, find it and press the "Go" button. Finally check the "Solver Add-In" entry.
- In Office 2003, chose "Add Ins" in the "tools" menu and check the "Solver Add In" entry.
- The Solver's files should be in the \OfficeNN\Library\Solver\ directory or in a directory with a similar name, where "NN" is 11 for Office 2003 or 12 for Office 2007. The program cannot be run with older releases of Office.

The program can be run from any directory on the PC, as well as from a USB Key or a Network Drive. The program can be saved with a different name.

Sometimes, we have experienced problems with the non-standard Windows International Settings. If you get a series of "#####" or "#VALUE" in some cells, please try using the US international setting or reset to the default values for the International Setting of your country.

1.3. Input sheet

CONTINUOUS FILAMENT WOUND FRP PIPE DESIGN BY TOPFIBRA ©					
<p>Program Release: PDP2022-10-03 BASALT Company Name: BASALT Machine # - Type: EFW2600 - CW2600 (DN300-2600)</p>					
Client/Job: Project & Item Code/#:	Client Project	<p>Select New Pipe Export as PDF Make Table</p>			
<p>Pipe Wall Structure Type: Standard Mortar Core International United Spigot OD Series (OD=1229,00 mm) - Standard (2010) Sleeve & Reka Induction Heating System - Extended Speed Table</p>					
<p>No errors found</p>					
Main Pipe Data - Basalt Fiber Reinforced		Pipe Sleeve Pipe&Sleeve			
Nominal Diameter	mm 1.200 inch 48	Total Wall Thickness	mm 19,6	34,5	(AVERAGE)
Nominal Pressure PN	bar 18 (261 psi) (18,4)	Net Weight	kg/m 150,4	264,9	157,4
Nominal Stiffness SN	Pa 10000 (1450 psi)	Resin + Basalt Fiber Sand (40,8% in pipe)	kg/m 92,4	206,6	97,8
(Specific Stiffness at 5,0% deflection)		Production Speed (Ind)	kg/m 58,7	58,4	60,2
			mh 27,3	10,5	25,6
Above: weight and raw material consumption for the pipe & the pipe for sleeve.					
Resins	Isophthalic HE	Settings	Liner		
Liner resin	Isophthalic HE	High Speed	Internal Liner	1,00 mm	
Structural resin	Isophthalic	Normal Sand	1 C glass surfacing veil		
Sleeve Liner Resin	Isophthalic HE	No Chemical Booster	Outer Liner	0,31 mm	
Sleeve Structural Resin	Isophthalic	No Low Tex Used	1 Polyester surfacing veil - no chop glass		
Design Factors	1,00 1,00	Solver Optimisation on R+F weight	Section Length	12,00 m	
<p>PREVIEW & PRINT PIPE DATA</p>					
<p>Summary Data Machine Setup Process Setup Technical & Test Data PLC-HMI Raw Material & Costs Print ALL Mandrel Details Warnings & Errors</p>					
<p>PREVIEW & PRINT SLEEVE DATA</p>					
<p>Summary Data Machine Setup Process Setup Technical & Test Data PLC-HMI Print ALL No Errors in Sleeve Pipe Audit Sleeve Audit</p>					

Figure 1

At the top of the page, you can find the "Program Release", the "Company Name" and the "Machine Type".

In the lower box you can input the "Client/Job" name and the "Project /Reference" name, which will be printed on the headings of the output pages.

Pressing the combination [Ctrl]+[Shift]+[Z] allows you to resize the Input Page to the available window.

Clicking the **Select New Pipe** push button allows the User to access the form in which they can select a new pipe specification.

Change Pipe Diameter & Class & Resins X

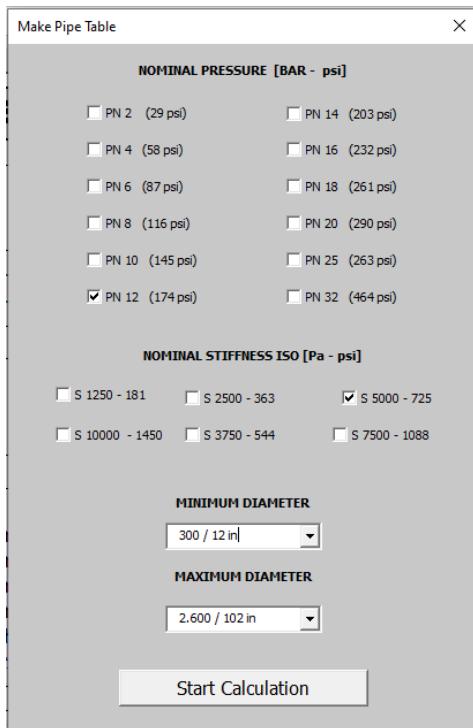
Nominal Diameter - mm	<input type="text" value="1.200 / 48 in"/> ▼
Pressure Class - bar	<input type="text" value="18"/> ▼
Stiffness Class - Pa	<input type="text" value="10000"/> ▼
Pipe Wall Structure	<input type="text" value="Standard Mortar Core"/> ▼
Pipe Liner Resin	<input type="text" value="Isophthalic HE"/> ▼
Pipe Structural Resin	<input type="text" value="Isophthalic"/> ▼
Sleeve Liner Resin	<input type="text" value="Isophthalic HE"/> ▼
Sleeve Structural Resin	<input type="text" value="Isophthalic"/> ▼
Fiber Type	<input type="text" value="Basalt"/> ▼
Calculate	

Figure 2

- The “Nominal Diameter” combo has already pre-set all the diameters to be produced.
- The “Pressure Class” combo has already pre-set all the pressures to be produced
- The “Stiffness” combo has already pre-set all the stiffness to be produced

The “Pipe wall structure” combo box allows the choice between:

- Standard Mortar Core;
- Premix Mortar Core;
- Full Glass
- Full Mortar


“Premix Mortar Core” is valid only if the machine is fitted with the premix system.

If a high pressure/low stiffness pipe class is selected, or if the User chooses a pipe with the mortar (since addition of mortar is not required to reach the stiffness class), the calculation can lead to a "Full Glass" pipe. Please see the "warning" on the next page.

NOTE: The selection of different resin types is possible for the pipes and sleeves using the proper input combo.

NOTE: The selection of different fiber types is possible for the pipes and sleeves using the proper input combo.

If you click the **Calculate** button, the program calculates the pipe and the sleeve. The program optimizes the pipe structure in order to get the cheapest pipe (lowest weight of the fiberglass and resin). If an invalid pressure class is selected, the diameter may be set to the maximum if this control has not been disabled (see chapter 4 - "

The push button **Make Table** shows the form on the left, which allows you to make tables of several pipes with different pressures and stiffness classes. Select the check boxes relevant to the pressure and stiffness classes that you want calculated and choose the maximum and minimum diameter. By default, the maximum and the minimum diameters for the selected machine types are shown.

Figure 4

Process setting input sheet). The calculation takes a few seconds.

The main results of the calculation are shown in the lower boxes of the "Input" page.

Warnings or Errors, if any, are shown before returning to the input page. Warnings or Errors for the sleeve are shown when you display and print the relevant pages. If errors for the sleeve are present, a note is shown at the bottom of the "Preview & Print Sleeve Data" menu, on the right of the main Input screen.

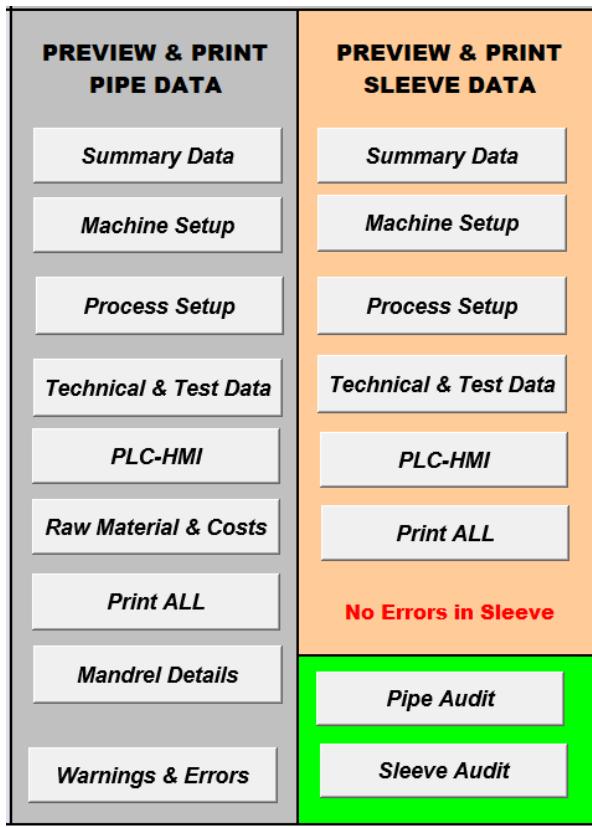
If calculated classes for the pressure or stiffness are different from the ones required by the User, they are shown in brackets below the rated ones.

WARNING:

GRP pipes are designed for the Pressure Class and for the Stiffness. It may happen that a pipe, designed for the pressure class lower than 6 bar, will have an actual pressure resistance higher than the required one, since the thickness calculated to satisfy the stiffness requirement is higher than the thickness required for the pressure. So while a PN6 S2500 pipe is really a PN6 pipe, a PN6 S5000 could actually be a PN7, and a PN6 S10000 could have a PN8 pressure class (it also depends on the selected resin system).

According to the Standards and to the Code, the minimum pressure class for a GRP pipe can be 1 to 3 bar (50 psig = 3.4 bar for AWWA C950; generally, 1 bar for ISO Standards; 0.5 bar for a BS5480 Gravity pipe).

On the other hand, if the Specification asks for a pipe with a very high-pressure class and low stiffness, you will probably get a pipe with a stiffness class higher than the requirement, and without a mortar core, which is not required to get the required stiffness. For example, a PN32 pipe has at least a stiffness of 3000 Pa.


This characteristic (impossibility to get a matching pressure and stiffness contemporarily) is the rule for designing a pipe without the sand core.

The meaning of the stiffness is a little different if the Project/Client Specification refers to the AWWA (US) Standards or to the ISO Standards. The AWWA Standards require you to test and calculate the Pipe Stiffness at a 5% pipe deflection. The ISO Standards require testing stiffness at a 3% deflection and to back calculate the Specific Stiffness at a 0% deflection (Initial Specific Stiffness). Hence, a pipe designed by our CFW Pipe Design program, which has an Initial Specific Stiffness of 5000 Pa, will not show a Specific Stiffness of 5000 Pa when tested and calculated at 5%. For this reason, it is possible (in the [InputAdv] page) to select at which deflection the Stiffness will be determined and tested. The criteria are shown on the Output page, in brackets under the "Stiffness Class" label.

Please also see the "Engineering Handbook" for these two matters.

The thickness and the reinforcement of the liner can be modified on the second input page, tabbed as [InputAdv]. This worksheet page includes the optional parameters, which are not usually changed.

The columns of push buttons on the right allow you to preview and print the output screens/pages.

- **Summary Data** shows the main characteristics of the pipe or of the sleeve;
- **Machine Setup** gives the main characteristics of the machine, the mandrel data, and the support tables settings;
- **Process Setup** gives the raw materials distribution settings and a suggestion for the selection of the resin trough;
- **Technical & Test Data** gives the technical properties of the pipe and the sleeve and other data, useful for the testing of the product;
- **PLC-HMI** consists of data for setting the CFW machine control computer;
- **Raw Materials & Costs** are the raw material consumptions and the costs. Unit costs have to be defined in the [InputAdv] page.

Figure 3

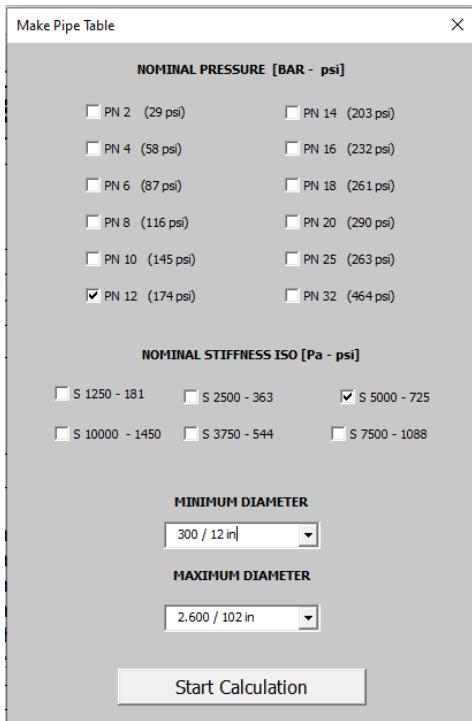


Figure 4

The push button **Make Table** shows the form on the left, which allows you to make tables of several pipes with different pressures and stiffness classes. Select the check boxes relevant to the pressure and stiffness classes that you want calculated and choose the maximum and minimum diameter. By default, the maximum and the minimum diameters for the selected machine types are shown.

1.4. Process setting input sheet

The sheet is structured in columns. The first column gives the description of the parameter and the unit. The column which is colour shaded is the only one where it is possible to change or input the data.

Data must be entered in the yellow shaded cells. In the light cyan shaded cells, the User may input a parameter to modify the default/standard parameter shown in the STD VALUE column (STANDARD VALUE).

USED VALUE is shown in the proper column and is the *STANDARD VALUE* if the *INPUT/CHANGE* cell is empty, otherwise it is taken from the *INPUT/CHANGE* cell.

To reset a changed parameter, it is advisable to delete the cell content rather than to input a 0 (zero). Sometimes 0 (zero) has a meaning! To delete the cell content, select the cell and press the "Delete" or "Del" key on the keyboard. Alternatively, select the cell, press the right mouse button and chose "Delete content".

These parameters should not be changed frequently and most of them are selected from a database, depending on the machine type or the pipe diameter. Using the optional input is useful, for instance, to change the fiberglass tex if the suggested tex is not available.

BASALT				0
PROCESS SETTINGS				
Machine Type	CW2600 (DN300-2600)			
Machine Serial Number	EFW2600			
Basalt Fiber FRP Pipe DN 1.200 / 48 in - PN18 - SN10000 - Standard Mortar Core Structure				
Project	INPUT	USED	STD	
No Standard Process Parameters Modified	CHANGE	VALUE	VALUE	
Design Options				
Spigot OD Series (1-5)		1	1	S International Unified Spigot OD Series
Fixed Diameter = OD (1) or ID=ND (2)		1	1	S OD Pipe: Fixed - ID Sleeve: Fixed
Calculate Stiffness at % deflection	%	5	5	G 5% for AWWA/ASTM Specific Stiffness - 0% for ISO Initial Specific Stiffness
Design factor for stiffness	-	1	1	U use to fine tune the pipe stiffness
Design factor for pressure	-	1	1	U for manufacturer experience fine tuning (0.5 to 1.5)
Design factor for Ultimate Hoop Tensile Strength	-	4	4	U 4 according to AWWA-ASTM standard
Sleeve & Reka Ring Series (1-4)	-	1	1	MSU Standard (2010)
Activate Ultimate Hoop Tensile Strength Design	<input type="checkbox"/>			U <-SEE COMMENT
Activate pressure limitation for single pipe	<input type="checkbox"/>			U <-SEE COMMENT
Activate pressure limitation for tailed pipe	<input type="checkbox"/>			U <-SEE COMMENT
Activate Solver Add-In optimisation based on fiber and glass raw materials weight	<input checked="" type="checkbox"/>			U <-SEE COMMENT
- OR on raw materiel cost (if costs available)				U <-SEE COMMENT
Threshold for the comparision Full Glass / Standard Core	1,50%			U Full Glass Structure is selected also if it is 1,50 % more consuming/expensive
Production Speed				
Use extend speed table	1-0	1	1	S
Mandrel advance speed reduction for sleeve pipe	%	30,0	30,0	G
Max mandrel advance speed	m/h	27,32	27,32	U For the actual pipe
Min mandrel advance speed	m/h	0,76	0,76	U For the actual pipe
Mandrel advance speed	m/h	27,32	27,32	U REM - Variable with DN and thickness
Induction: Blank=Default , 0.1 = No-Yes		1	1	U
Section Length	m	12	12	U Cutting length of the pipe section
Section Length for Sleeve Pipe	m	6		U Cutting length for the pipe for making sleeves
Use shrinkage for calculation of mandrel OD	<input checked="" type="checkbox"/>			U Since pipe ID expands with curing, this option calculates a smaller mandrel OD.
Mylar release film				
Mylar width	mm	50	50	G
Mylar thickness	mm	0,03	0,03	G
Mylar weight	g/m ²	36	36	G

Figure 5

Internal liner						
Type of S.V. (1="C" glass; 2=Polyester)	g/m ²	1	30	30	G	C glass
Surfacing Veil (S.V.) weight	g/m ²		90	90	G	
Resin content by weight for S.V.	%		1,2	1,2	G	
Liner resin density (cured)	-				G	
Number of veils	Nr.	1			G	1 C glass veil — 90% of resin
Roll width	mm		50	50	G	steel band width + 10 mm
Total liner thickness (S.V. & chop)	mm	1,00			G	
Resin content by weight for chop liner	%	70			G	
Number of Roving Strands for Chopper	Nr.	4			G	
Liner Hoop Roving Tex	Tex		600	600	G	
Liner Hoop Roving Number	Nr.	3			G	Polyester Yarns may be used as alternative
Sleeve Liner built with structure up to DN <	mm		500	500	M	For machines where applicable.
Low Tex						
Use Low Tex (LT) Hoop over the liner		□			G	
Use Low Tex Hoop before and after the core		□			G	TEMPORARILY NOT APPLICABLE FOR SLEEVE AND PREMIX
Use Low Tex Hoop after the outer skin		□			G	
Structural Wall Thickness Limitations						
Minimum skin thickness	mm	0,6	0,6		G	The maximum of the two values is chosen
-minimum skin thickness ratio to DN	-	0,001	0,0010		G	For full glass pipe total structural wall is doubled
Standard Mortar Core						
Min thickness for core sand layer	mm	0,5	0,5		M	If a mortar core thinner than this comes from the calculation, pipe
but not less than 5% of the structural thickness	%	5	5		G	is made without mortar core.
Core max thickness for 1 mandrel rotation	mm	2,40			G	
equal to ND/500 (2,4 mm with the actual pipe)			500	500	G	These parameters can be used to change the thickness of the
but not more than			4,00	4,00	G	mortar core for each revolution of the mandrel, with the limitations
and not less than			0,50	0,50	G	due to the length of the distribution area.
Premix Mortar Core						
Number of used premix extruder	nr	2	2		M	machine default
Max Premix sand layer thickness (1 extruder)	mm	25	25		M	machine default
Min Premix sand layer thickness (1 extruder)	mm	10	10		M	machine default

Figure 6

Chopper Setup						
Roving Tex for Chopper	tex	2400	2400	G	1200 tex for ND<300; otherwise 2400 tex	
Optimum chop roving linear speed	m/s	0,5	0,5	G		
Chopper "inset"	mm	0,0	0,0	U		
Minimum spacing of chop roving	mm	13,0	13,0	G	>= 1x the chop comb pitch	
Maximum spacing of chop roving	mm	39,0	39,0	G	= 3x the pitch	
Outer Liner					1 Polyester surfacing veil - no chop glass	
Chopped Glass Liner (1=Yes)		No			G	
Resin content by weight for chop liner	%	70			G	
Total liner thickness including Surfacing Veil	mm	1,0			G	
Outer Surfacing veil (1=Yes)		Yes			G	
Surfacing veil weight	g/m ²	30			G	
Number of veils	Nr.	1			G	1 Polyester surfacing veil - 50 mm roll width - 90% of resin
Roll width	mm	50	50	G		
Type of S.V. (1="C" glass; 2=Polyester)		2			G	Polyester

Figure 7

Most of the modifiable parameters are self-explanatory. When you pass over the input cells with the mouse cursor, a comment/clarification is shown where it is thought necessary or advisable (cells with red triangle in the top right corner).

The first block (on the previous page in red) defines the main parameters for the machine.

The Fixed Diameter choice allows you to select if the internal diameter is fixed and equal to the nominal diameter. In this case, the outer diameter will be variable, depending on the thickness of the pipe. The sleeve will also not be a standard one. Special end closures will be required for the hydrotesting machine.

The "OD from AWWA/ASTM/ISO (1) or Old ASTM (2) Table" allows you to choose the OD Series. The (1) choice is the last standard OD according to the AWWA Table 5, ASTM "International Standard Series" or ISO Series B1, which have been unified in the last years. The (2) choice is the previous ASTM Standard OD. A Special Series (3) may be available for the backward compatibility with the other machines/standards.

The Reka Ring Series choice is for the new (2010) (1) or old (2) series of the Reka Gasket and groove grinding equipment.

The percentage deflection at which to calculate the stiffness has been outlined above. If the requirement of the specification is for the "Initial" Specific Stiffness according to ISO, input 0 % instead 5 %.

The "Deflection coefficient" lets you rectify the pipe structure calculation if the found stiffness of the pipe is lower or higher than the design stiffness. If, for example, the actual stiffness, tested on the first produced pipe, is 4500 Pa instead of 5000 Pa (10% less), input 1.1 as a "Deflection coefficient" and calculate the pipe thickness and structure again from the Input Page, and modify it on the CFW machine. Please note that the stiffness has a high sensitivity towards the pipe thickness, since the wall thickness is at cube power in the stiffness definition, and for this reason a 10% change in the stiffness will result in 3.5% change in the thickness.

If the pressure limitation is activated, the program will not calculate the pipe, so set the pressure to the maximum for the diameter for the single pipe, or skip the pipe in the "Make Table" procedure.

Taking the shrinkage into account influences the calculation of the mandrel OD. Shrinkage is relevant in a pipe with a high hoop glass content.

The block (below) defines the Pipe Structural Wall composition.

Pipe Structural Wall Composition (% by weight)					
Auto select composition from Hoop and Sand Content	<input checked="" type="checkbox"/>	1	1	G	Max 1.2 (more resin) ; min 0.8 (less resin)
Factor for Resin Impregnation					
<u>Low Tex after the liner for squeezing</u>					
Roving Tex	Tex	600	600	G	
Liner Hoop Roving Spacing	mm	8	8	M	from the machine
Number of helix advaces involved	nr.	2	2	G	
Number of strands	nr.	10			
<u>Inner / Outer Skin</u>					
Use always second comb to keep the structure shorter	<input checked="" type="checkbox"/>	1			
Hoop in skins (Basalt Fiber)	%	58,9	58,9	G	
Roving Tex in skins	Tex	2400	2400	G	(100; 200; 300; 600; 740; 900; 1100; 1200; 1800; 2000; 2200; 2400; 4400; 4800)
Chop in skins (Basalt Fiber)	%	15,8	15,8	G	
Structural resin density (cured)	-	1,20	1,20	G	
Resin - Must be >= 20	%	25,3			
<u>Low Tex before and after the core</u>					
Hoop content (Basalt Fiber)	%	35,0	35,0	G	
Chop content (Basalt Fiber)	%	35,4	35,4	G	
Resin - Must be >= 20	%	29,6			
Hoop Roving Tex	Tex	600	600	G	
Number of helix advaces involved	nr.	2	2	G	
Number of hoop strands	nr.	13			
<u>Standard Mortar Core</u>					
Sand in core	%	65,0	65,0	G	
Hoop in core	%	2,0	2,0	G	
Roving Tex in core	Tex	600	600	G	(100; 200; 300; 600; 740; 900; 1100; 1200; 1800; 2000; 2200; 2400; 4400; 4800)
Chop in core	%	10,4	10,4	G	10,37820513
Resin - Must be >= 20	%	22,6			
Design resin flow ratio per unit length core/skin		2,00		G	Increase this value in order to shorten the core length (and vice versa).

Figure 8

Premix Mortar Core					
Sand in core	%		80,0	80,0	G
Resin	%		20,0		
Low Tex for Premix	Tex	600	600	G	
Number of strands (for 1 extruder)	nr.	10	10	G	
Low Tex after the Outer Skin					
Roving Tex	Tex	600	600	G	
Number of strands (with double spacing)	nr.	4	4	G	
Sleeve Structural Wall Composition (% by weight)					
<i>Grinding Thickness - Standard Mortar Core</i>					
Sand in core	%		46,0	46,0	G
Hoop in core	%		5,0	5,0	G
	Tex	600	600	G	(100; 200; 300; 600; 740; 900; 1100; 1200; 1800; 2000; 2200; 2400; 4400; 4800)
Chop in core	%		16,0	16,0	G
	Resin		33,0		
<i>Outer Skin</i>					
<i>Minimum thickness</i>					
Absolute minimum thickness	mm		4,0	4,0	G
Diameter Ratio (DN/x)	n	250,0	250,0	G	4,8 mm for the actual ND (1.200)
Hoop in skins	%		46,0	46,0	G
	Tex	2400	2400	G	(100; 200; 300; 600; 740; 900; 1100; 1200; 1800; 2000; 2200; 2400; 4400; 4800)
Chop in skins	%		26,4	26,4	G
Structural resin density (cured)	-		1,20	1,20	G
	Resin		27,6		

Figure 9

The default composition is chosen according to the function of the product (pipe or sleeve) and to the structure of the mortar core.

The block below define the resin missing percentages.

These percentages are intended only for average consumption calculation.

Actual percent for the resin preparation and curing to be defined for the specific resin used, ambient conditions and needed curing time. "

Resin Mixing (part per hundred of resin)					
Catalyst Ratio (% by weight)	%		1,50	1,50	G
- for liner resin	%		1,50	1,50	G
- for structure resin	%		1,50	1,50	G
- for premix resin	%		1,50	1,50	G
Promoter Ratio (% by weight)	%		0,15	0,15	G
Inhibitor Ratio (% by weight)	%		0,05	0,05	G
Styrene	%		3,50	3,50	G
Consumables (acetone for cleaning tools)	%		1,00	1,00	G
Resin Viscosity	cps	250			G

These percentage are intended only for average consumption calculation.

Actual percent for the resin preparation and curing to be defined for the specific resin used, ambient conditions and needed curing time.

Figure 10

The block below allows you to define the raw materials loss coefficient:

Raw Materials Loss Coefficients					
Liner Resin			1,050	1,050	G
Structural Resin			1,050	1,050	G
Surfacing Veils			1,020	1,020	G
Chopped Fiber			1,050	1,050	G
Hoop Fiber			1,005	1,005	G
Sand			1,050	1,050	G
Mylar			1,020	1,020	G
Styrene			1,050	1,050	G
Acetone			1,000	1,000	G
Catalyst			1,050	1,050	G
Promoter			1,050	1,050	G
Inhibitor			1,050	1,050	G

These Loss Coefficients are intended for increasing the raw materials consumption to take account of the losses of material during production and for the evaluation of the final cost of the pipe.

Figure 11

On the right side, two columns for the cost are available, and the User can switch between the main column in Euros and the second column in an alternative currency. All the costs in the two right-hand columns can be modified.

1.5. Brief page

The [Brief] page shows the results of the **Make Table** calculations in a tabular form. The User can copy and paste the table for further analysis and calculation.

The column "Errors" shows the number of warnings and errors.

The "Net Weight" is the weight per linear meter of the simple pipe: "With Sleeve" includes the overweight due to the sleeve.

The "Production Rate" is given for the pipe and for the sleeve separately and as a mean production rate, to directly calculate the total production time. The "Raw Material Consumption" includes sleeve and wastes.

Clear All																												
Dn mm inch	Dn mm inch	Design Pressure bar	Design Stis Pa	Fiber Type	Solver	Design Goal Weight/Cost	Pipe Thicknesses				Pipe Net RawMat				Sleeve Thicknesses				Sleeve Net RawMat									
							Liner mm	IntSkin mm	Core mm	OutSkin mm	OutLin mm	TotWall mm	LinRes kg/m	MecRes kg/m	TotRes kg/m	Fiber kg/m	Tot.R+F kg/m	Sand kg/m	Liner mm	Core mm	OutSkin mm	OutLin mm	TotWall mm	LinRes kg/m	MecRes kg/m	TotRes kg/m	Fiber kg/m	Tot.R+F kg/m
1200	48	18.0	10000	Basalt	TRUE	Weight	1.00	3.43	11.41	3.43	0.31	19.59	3.96	35.64	39.60	52.78	92.38	58.69	1.00	17.00	16.48	34.48	4.10	80.30	84.40	123.26	207.66	58.36
1600	63	12.0	5000	Basalt	TRUE	Weight	1.00	2.98	14.11	2.98	0.31	21.39	5.31	51.75	57.06	67.11	124.18	96.97	1.00	20.30	14.04	35.34	5.46	110.16	115.62	151.35	266.97	92.64
1600	63	12.0	5000	Basalt	TRUE	Weight	1.00	2.98	14.11	2.98	0.31	21.39	5.31	51.75	57.06	67.11	124.18	96.97	1.00	20.30	14.04	35.34	5.46	110.16	115.62	151.35	266.97	92.64
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	38.35	42.29	41.02	83.31	82.23	1.00	17.00	10.21	28.21	4.10	66.06	70.16	86.39	156.55	58.36
1200	48	12.0	10000	Basalt	TRUE	Weight	1.00	2.04	16.01	2.04	0.31	21.40	3.95	3														

BASALT

Machine Settings

Machine Type	CW2600 (DN300-2600)		
Machine Serial Number	EFW2600		
Basalt Fiber FRP Pipe DN 1.200 / 48 in - PN18 - SN10000 - Standard Mortar Core Structure			
Project	INPUT	USED VALUE	STD VALUE
No Machine Standard Parameters Modified	CHANGE		
Chemical booster		0	S
Sleeve calculation (1=std; 2=rubber band; 3=none)		1	S
PLC/HMI Type (1=new kg/min; 2=old kg/min; 3=last)		3	S
DN Max for small mandrel - band width	mm	600	M
Small DN band width / advancing pitch	mm	40	M
Large DN band width / advancing pitch	mm	40	M
Small DN steel band thickness	mm	1,2	M
Large DN steel band thickness	mm	1,7	M
Used Steel band width for actual pipe size	mm	40	
Used Steel band thickness	mm	1,7	
Grinding thickness	mm	0,1	G For fine tuning the pipe spigot OD.
Resin Pumps Capacity			
Liner MAX		15	M
Liner MIN		0,05	M
Structure 1 MAX		15	M
Structure 1 MIN		0,05	M
Structure 2 MAX		25	M
Structure 2 MIN		0,05	M
Premix MAX		15	M
Premix MIN		0,05	M
Liner Setup			
<i>The Liner Reference Line (LRL) is the position of the First Groove of Liner Hoop Roving Comb</i>			
Mylar Offset from the LRL	mm	-300	G
Surfacing Veil 1 Offset from the LRL	mm	-100	G
Surfacing Veil 2 Offset from the LRL	mm	-75	G
Resin Trough Offset from the LRL	mm	0	G
Chopper Offset from the LRL	mm	0	G
Fiber Type: Basalt			
Hoop Roving (HR) Setup			

Figure 13

<i>The Structure Reference Line (SRL) is the position of the First Groove of the Hoop Roving Comb</i>			
Hoop Roving Comb Type for Small DN band width		3	3 M 266 Rovings in 1631 mm (pitch 6,15 mm)
Hoop Roving Comb Type for Large DN band width		3	M 266 Rovings in 1631 mm (pitch 6,15 mm)
Number Hoop Roving Combs (1 or 2)		2	M Available and/or allowed to be used
Offset from Zero of first Hoop Roving Strand (only +)	mm	0,00	M To change the starting position of the first hoop roving in skin
<i>Chopper Setup</i>			
Max Chopper Speed for Liner	rpm	200	M machine default
Max Chopper Speed for Structure	rpm	200	M machine default
Available slots in the chopper comb (structure)	nr	120	M machine default
Comb pitch for chop rovings for structure	mm	13,0	M machine default
First slot offset from SRL	mm	45,0	M change for fine tuning
<i>Standard Mortar Core</i>			
Sand dispenser single slot width (gauge)	mm	40,2	M machine default
Sand dispenser total length	mm	1487,0	M machine default
Number of slots	mm	37,0	M machine default
First slot offset from SRL	mm	75,0	M change for fine tuning
<i>Premix Mortar Core</i>			
Width for 1 premix core extruder	mm	600	M machine default
Width for 2 premix core extruder	mm	900	M machine default
Width of the Premix Veil	mm	230	G
Weight of the Premix Veil	g/m2	25	G

Figure 14

1.7. Unit costs

In this page it is possible to define the unit cost to determine the final cost per meter of the produced pipe

RAW MATERIAL UNIT COSTS AND OTHER PRODUCTION COSTS		PDP2022-10-03 BASALT			
ALLOW VISUALIZATION AND PRINTING OF PIPE COST		<input checked="" type="checkbox"/> Allow Costs <input checked="" type="checkbox"/> Use Local Currency		Visualization and Printing of Pipe Costs - Allowed Local Currency Selected	
PRICE BASE (unit prices at the generation of the program)		EUROPE			
MAIN CURRENCY		USD			
Standard costs are given in USD. Insert a different currency and exchange rate to convert into local currency.					
LOCAL CURRENCY		USD			
Rounding		2			
Exchange Rate:		1,00			
Used Currency: ---->>>		USD			
Liner Resins Costs and correction factor for HDB prediction		HDB F(%)	USD Cost USD/kg	Local C. USD/kg	Varied Cost USD/kg
Isophthalic HE		100%	3,32	3,32	3,32
Isophthalic		100%	2,40	2,40	2,40
Terephthalic		100%	1,60	1,60	1,60
Orthophthalic		100%	1,99	1,99	1,99
Vinylester HE		100%	3,50	3,50	3,50
Vinylester		100%	4,10	4,10	4,10
Bisphenolic		100%	3,00	3,00	3,00
Special		100%	-	-	-
(*) HDB correction factor. HDB is predicted for ISO HE liner and ISO Std resin in the structure. Other resin system may require correction factors. User can change reduction factors.					
Structure Resins Costs		HDB F	Cost USD/kg		
Isophthalic		100%	2,40	2,40	2,40
Terephthalic		100%	1,60	1,60	1,60
Orthophthalic		100%	1,99	1,99	1,99
Vinylester		100%	3,50	3,50	3,50
Bisphenolic		100%	3,00	3,00	3,00
Special		100%	-	-	-

Figure 15

Fiber & Reinforcements Costs		Cost				
ONLY COST FOR GLASS FIBER TILL NOW !!!!!						
"C" Glass Veil	USD/kg	5,00	5,00		5,00	5,00
Polyester Veil	USD/kg	15,00	15,00		15,00	15,00
Premix Veil	USD/kg	5,30	5,30		5,30	5,30
Roving for chopper (2400 Tex)	USD/kg	1,31	1,31		1,31	1,31
Hoop Roving 100 Tex	USD/kg	1,97	1,97		1,97	1,97
Hoop Roving 200 Tex	USD/kg	1,97	1,97		1,97	1,97
Hoop Roving 300 Tex	USD/kg	1,24	1,24		1,24	1,24
Hoop Roving 600 Tex	USD/kg	1,24	1,24		1,24	1,24
Hoop Roving 740 Tex	USD/kg	1,20	1,20		1,20	1,20
Hoop Roving 900 Tex	USD/kg	1,20	1,20		1,20	1,20
Hoop Roving 1100 Tex	USD/kg	1,13	1,13		1,13	1,13
Hoop Roving 1200 Tex	USD/kg	1,13	1,13		1,13	1,13
Hoop Roving 1800 Tex	USD/kg	1,20	1,20		1,20	1,20
Hoop Roving 2000 Tex	USD/kg	1,20	1,20		1,20	1,20
Hoop Roving 2200 Tex	USD/kg	1,20	1,20		1,20	1,20
Hoop Roving 2400 Tex	USD/kg	1,20	1,20		1,20	1,20
Hoop Roving 4400 Tex	USD/kg	1,20	1,20		1,20	1,20
Hoop Roving 4800 Tex	USD/kg	1,20	1,20		1,20	1,20
Sand	USD/kg	0,06	0,06		0,06	0,06

Figure 16

Auxiliary Materials Cost		USD/kg	4.50	4.50	4.50	4.50
Mylar (50 mm wide - 30 micron)		USD/kg	1,90	1,90	1,90	1,90
Styrene		USD/kg	1,71	1,71	1,71	1,71
Acetone		USD/kg	3,95	3,95	3,95	3,95
Catalyst		USD/kg	8,70	8,70	8,70	8,70
Promoter		USD/kg	9,30	9,30	9,30	9,30
Inhibitor		USD/kg	4,00	4,00	4,00	4,00
Reka Gaskets per kg		USD/kg	3,50	3,50	3,50	3,50
Steel Band		USD/kg				
Machine and Labor						
Machine cost	USD	3.000.000	3.000.000	3.000.000	3.000.000	3.000.000
Auxiliary equipments	USD	1.500.000	1.500.000	1.500.000	1.500.000	1.500.000
Other plant costs for amortization	USD	1.000.000	1.000.000	1.000.000	1.000.000	1.000.000
		5.500.000	5.500.000	5.500.000	5.500.000	5.500.000
Amortization period	years	5,00		5,00	5,00	
Interest rate		10,00%		10,00%	10,00%	
Annual quota	USD	1.450.886				
Production hours in 1 year	hours	3.000		3.000	3.000	
Machine & Plant Hourly cost		USD/h	480,00			
Workers per shift	nr	12,00		12,00	12,00	
Labor cost	USD/h	15,00	15,00	15,00	15,00	
Energy cost	USD/kWh	0,05	0,05	0,05	0,05	
General expenses			15,00%		15,00%	
Profit			12,00%		12,00%	

Figure 17

1.8. Custom design

The pipe design program is prepared to calculate the most optimized recipe for any stiffness and any pressure.

- Press: Ctrl + Shift + S
- The below POP UP will appear

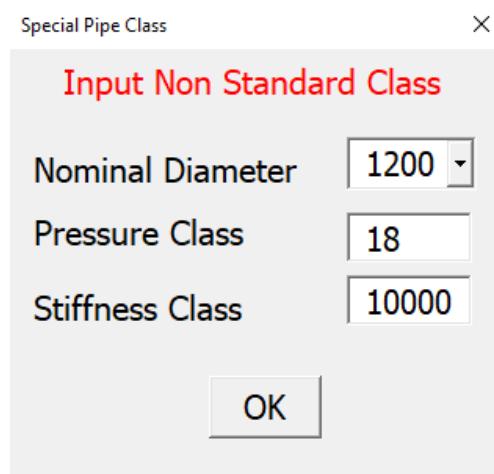


Figure 18

- Choose the required Pressure and Stiffness
- Press OK

1.9. Input thickness of the layers manually

The pipe design program is prepared to do reverse-engineering of a certain pipe, with the manual input of the Layers

- Press Ctrl + Shift + M
- The below POP UP will appear

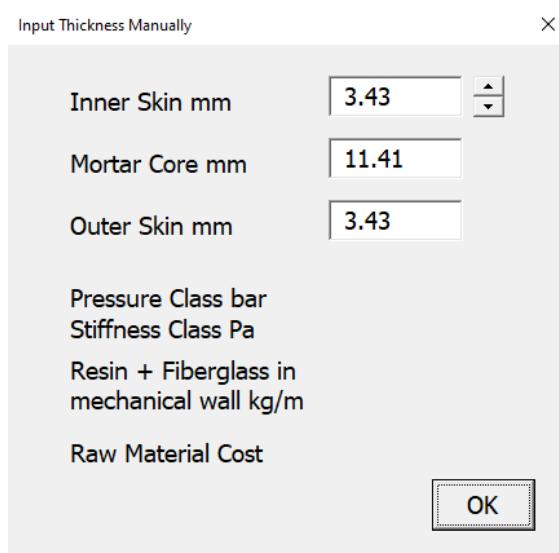


Figure 19

- Input manually the Inner Skin, Mortar Core and Outer Skin
- Press OK

1.10. Audits

The Quality Control needs to perform Audits on the Blank for Sleeve and Pipe being produced

The Pipe design software automatically prepares the Audit Formats.

- Go to the Input Page and Press on Pipe Audit or Sleeve Audit as per your needs

Figure 20

- The following POP UP will appear

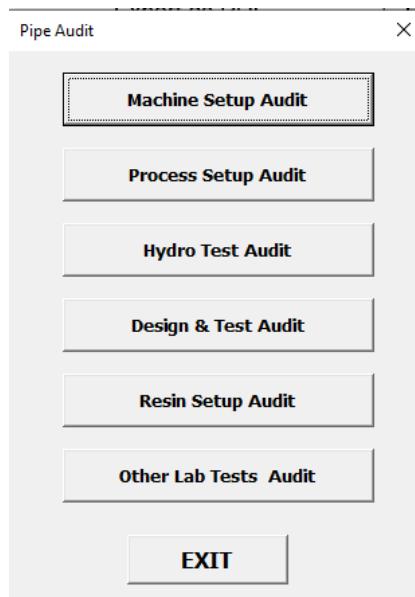


Figure 21

Pressing on the Options you will get the prepared Audit Forms

For example:

DATA COLLECTION FOR PROCESS AUDIT		BASALT																									
Client: Client - Project & Ref. Nr.: Project Basalt Fiber FRP Pipe DN 1.200 / 48 in - PN18 - SN10000 - Full Glass Structure Machine: CM2000 (DN200-3600)		Stiffness at 5% Deflection with SDI 1,00 PDP2000-10-42 BASALT { 1,00 - 1,00 - Solver Optimization on R-F weight }																									
Operator: Day: Pipe Number: Time (pipe cutting): Average Ambient Temp at the complaints: °C:	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td></tr> </table>																										
ON UNIT TESTS/SCHEMES		Design Values																									
PRODUCTION SPEED Design speed with induction: 31,0 m/h		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
RESIN FOR LINER Resin Flow: 4,07 kg/m Hole Size: mm Resin Trough Charging: % (X) Catalyst: %		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
RESIN FOR STRUCTURE Resin Flow: 3,83 kg/m Only for PRFMIX - 2nd trough flow: kg/m Holes diameter: mm Resin Trough Charging: nr. Catalyst: %		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
CHOPPED GLASS FLOW In the liner (chopper 1): 1,17 kg/m In the structure (chopper 2): 1,55 kg/m		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
MORTAR CORE Sand Flow: 0,0 kg/m Sand temperature: °C compaction roll changing: nr.		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
10/11/2022 TOPFIBRA © Page 1/2																											

Figure 22

DATA COLLECTION FOR PROCESS AUDIT		BASALT																									
Client: Client - Project & Ref. Nr.: Project Basalt Fiber FRP Pipe DN 1.200 / 48 in - PN18 - SN10000 - Full Glass Structure Machine: CM2000 (DN200-3600)		Stiffness at 5% Deflection with SDI 1,00 PDP2022-10-20 BASALT { 1,00 - 1,00 - Solver Optimization on R-F weight }																									
STRUCTURE CURING Induction percentage: % Induction feed: kW Oven 1 Percentage: % Oven 2 Percentage: % Oven 3 Percentage: % Oven 4 Percentage: % Peak Temperature: °C Peak Position: %	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																										
LAB TEST Liner Resin Resin temperature: °C Gel Time from trough: mm:ss Viscosity from trough: cps Exothermic Peak: °C Time to Peak from trough: mm:ss		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
Structure Resin Resin temperature: °C Gel Time from trough: mm:ss Viscosity from trough: cps Exothermic Peak: °C Time to Peak: mm:ss		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
CONTROL ON THE PIPE SECTION AFTER PRODUCTION PHYSICAL MEASUREMENT		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
Pipe 1st end: 1.220,2 mm Pipe 0,025 end: 1.220,2 mm Spigot OD 1st end: 1.220,0 mm Spigot OD 2nd end: 1.220,0 mm Wall Thk. at Spigot (avg. 1st end): 2,31 mm Wall Thk. at Spigot (avg. 2nd end): 2,31 mm Section length: 12,00 m Section weight: 203,38 kg		<table border="1" style="width: 100%; border-collapse: collapse;"> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td></tr> </table>																									
10/11/2022 TOPFIBRA © Page 2/2																											

Figure 23

For more information contact us writing at
support@topfibra.eu

or

visit our page
www.topfibra.eu

To learn more of the EFW technology visit our blog
www.effectivefilamentwinding.com

www.facebook.com/effectivefilamentwinding

www.linkedin.com/company/topfibra-d-o-o-

www.twitter.com/topfibraefw

Headquarters office

Topfibra d.o.o., Lokarjev drevored 1, 5270 Ajdovščina, Slovenia, Europe.

+386 8 200 1500

sales@topfibra.eu

support@topfibra.eu

TOPFIBRA
EFFECTIVE FILAMENT WINDING® PIONEERS
www.topfibra.eu | www.effectivefilamentwinding.com